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Abstract. The Maxwell energy-momentum tensor associated with the Liénard–Wiechert field
of a point charge in arbitrary motion splits naturally into a bounded and a radiative part. It is
known that the bounded part of the Maxwell tensor does not contribute to the energy-momentum
balance between matter and field which is completely accounted for by its radiative part only.
In this paper we show that the purely radiative part of the Maxwell tensor can be further
decomposed as the sum of a term, again not contributing to the energy-momentum balance, plus
a part which is completely responsible for it. Furthermore, we also manage to find that the full
radiative part of the Maxwell tensor can be generated by a superpotential that has to be regarded
as non-local since its definition involves integration over a finite section of the charge’s world
line.

1. Introduction

A charged particle moving arbitrarily in the flat Minkowski four-space generates at points
xr on its forward light cone, see figure 1, a retarded Liénard–Wiechert electromagnetic field
(LWF) [1] which in Heaviside–Lorentz units withc = 1 is

Fab(xr; zr(τ )) = q

R2

(
k[az̈b] + (1−W)

R
k[ażb]

)
= q

R2
(Uakb − kaUb)

(1)

whereq is the particle’s electric charge,zr(τ ) (or P ) stands for the particle’s position on
its world line, C, as a function of the proper timeτ , vb = dzb/dτ is the four-velocity,
ab = dvb/dτ is the four-acceleration,kr ≡ xr − zr(τ ) so that kr is null: kik

i = 0,
R ≡ −krvr is the retarded distance fromP to the field pointQ on the null cone,W ≡ −krar ,
Uc = Bvc + ac, B ≡ (1− W)/R is the Plebánski [2] invariant andX[ab] ≡ Xab − Xba
stands for asymmetrization. The four-vectorUa is known as the Synge vector [3] and has
some interesting properties, for example,Uc

,c = 0 (the Lorentz condition),UcR,c = 0,
andUckc = −1. It is also quite obvious that the first term on the right-hand side of the
first line in equation (1) can be regarded as the radiative part of the field since its energy
flux is non-vanishing even very far from the charge, whereas the second term, with an
asymptotically vanishing flux, can be regarded as bounded to the moving charge [4].
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Figure 1. Kinematics of the world line,C, of the point-charge emitting the Liénard–Wiechert
field. The field-pointxr (P ) is on the forward light cone,zr (τ )(Q) is the charge’s position
on the world line,vb = dzb/dτ is the four-velocity,ab = dvb/dτ is the four-acceleration,
kr ≡ xr − zr (τ ) so kr is null, R ≡ −krvr is the retarded distance fromP to Q. To write some
of the quantities of interest we define the quantitiesB ≡ (1+ krar )/R andUr ≡ Bvr + ar .

The energy and momentum of the electromagnetic field are contained in a symmetric
tensor, the energy-momentum or Maxwell tensor is defined as [1]

T ab ≡ FacF bc − 1
4(FijF

ij )ηab

= T abR + T abB .
(2)

In the last line of equation (2) we have explicitly written up the splitting of the Maxwell
tensor as a sum of its radiative(R) part:

T abR =
q2

R4

(
arar − W

2

R2

)
kakb (3)

plus its bounded(B) part:

T abB =
q2

R4

(
1

2
ηab + k(aab) + Bk(avb) − (1− 2W)

R2
kakb

)
(4)

in these expressionsηab = diag(−1, 1, 1, 1) is the flat Minkowski metric. As is well known
[1, 5–11] the energy-momentum tensor is determined by the field equations, except for
the possible addition of the divergence of a tensor vanishing at spatial infinity; this is at
least partly due to the fact that the only measurable quantities associated withT ab are the
energy and momentum fluxes and these are defined as integrals over the boundaries of any
three-volume,V3 —and so the divergence does not contribute to the fluxes. Moreover, as
it must be clear, the radiative part of the energy-momentum tensor fulfills Villarroel’s [6]
conditions for a radiation tensor

TR
ibkb = 0 TR

ib
,b = 0. (5)

In this work we address two questions concerning the Maxwell tensor of a LWF. We
first show, in section 2, that the non-uniqueness of the Maxwell tensor allows us to introduce
a modified Maxwell tensor̃Tij 6= Tij . Both tensors,T ab and T̃ ab, produce the same value
for the fluxes; given this property, we claim that these two energy-momentum tensors are
completely equivalent to each other—at least in those matters pertaining to a Bhabha–Synge
tube [3, 10] and the energy-momentum fluxes through it. In section 3, we show that the
radiative part of a Maxwell tensor can be generated by a non-local superpotential of the
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type first introduced by Van Weert [12], except for the non-locality of the one proposed
here.

2. The splitting of the radiative part of the energy-momentum tensor

In this section we are interested only in the radiative part of a LWF, so we can, without
losing any generality, assume that the whole electromagnetic field is a radiation field, i.e.
we assume thatTab coincides with the radiative partTR ab of the LWF [5, 13] and that the
three-dimensional region mentioned above can be regarded as a Bhabha–Synge tube [13].
As we explicitly exhibit below, we can split the radiative Maxwell tensor as

TRij = T̃Rij + Aij (6)

whereAij is a tensornot contributing to the flux through the light cone associated with
the point charge nor to the flux through a surface of constant retarded distanceR [3]. We
can say then thatAij is the inactive part of the radiative tensorTRij since it does not
participate in the energy-momentum balance through the Bhabha–Synge tube, and thatT̃Rij
is the modified Maxwell tensor for the radiation field.

To put (3) in the form of (6) it suffices to introduce

T̃Rij ≡ 2
q2

R6
W 2kikj (7)

and

Aij ≡ q2

R4

(
arar − 3

W 2

R2

)
kikj (8)

It is quite simple to check that the two parts in which the energy-momentum tensor are split
are dynamically independent in Teitelboim’s sense [2], that is, the divergence of each term
vanishes outside of the world line

T̃R
ib
,b = Aib,b = 0 (9)

and that

T̃R
ibkb = Aibkb = 0 (10)

so that (7) and (8) are true radiation tensors [6] not modifying the radiation rate at infinity.
We can now use pre-existing expressions that were calculated, for example, in [3] or [5]

to evaluate the linear and angular momentum fluxes through the particle’s light cone (the
surface of constant proper time,τ ) and through the surface of constant retarded distance
(i.e. constantR)—that is, through the walls of a Bhabha–Synge tube—contributed byAij .
In this way we obtain∫

R=constant
Aib dσb = R2

∫ τ2

τ1

dτ
∫
AibR,b d� = 0∫

τ=constant
Aib dσb = −

∫ R2

R1

R dR
∫
Aibkb d� = 0∫

R=constant
Mijb dσb =

∫
τ=constant

Mijb dσb = 0

(11)

whereMijr ≡ XiAjr −XjAir , Xi an event in Minkowski space, is the angular momentum
density associated with (8). These results justify our claim that, with regard to energy-
momentum flows through a Bhabha–Synge tube,Aij does not contribute and then the
modified Maxwell tensorT̃ ijR is equivalent to expression (3) for the radiative Maxwell
tensor.
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3. The superpotential for the radiative part

Let us exhibit that the whole radiative part of the Maxwell tensor of a LWF can be obtained
from a world-line-dependent superpotential. As electromagnetic radiation is obviously a
non-local phenomenon there can be no surprise in finding that the superpotential is given in
terms of integrals over the world line of the radiating charge. We must point out, however,
that this is not the first time a non-local superpotential has been proposed, see for example
[14].

It is well known that the radiative,T abR , and the bounded,T abB , parts of the energy-
momentum tensor of a LWF are dynamically independent for, outside of the charge world
line, we have

TB
ib
,b = 0

TR
ib
,b = 0.

(12)

Some years ago Van Weert [12] showed that the first of equations (12) maybe regarded as
a consequence of the existence of a superpotentialKB

ijr = −KBjir generating the bounded
part of the Maxwell tensor through

TB
cr = KBrjc,j . (13)

The Van Weert superpotentialKBijr can be interpreted as an intrinsic angular momentum
(or spin) density for the field of a moving charge [14]. This has been established by noticing
that the algebraic and differential properties ofKB

ijr happen to be identical to the properties
of the Lanczos superpotential in general relativity [15, 16], this is an interesting property
which permits analogies between LWF in classical electrodynamics and Robinson–Trautman
solutions in general relativity. Using such analogies we have been able to introduce a
conformal tensor for the radiative part of a LWF and have managed to classify algebraically
the LWF [17] as a Petrov-type II field in the generic case (note that the expression for the
symmetric Maxwell tensor is incorrectly written in that paper).

Now we follow Van Weert’s idea—though not its procedure since he did not say how
he got its superpotential—to show that the last of equations (12) can be regarded as a
consequence of the existence of a superpotential with the symmetry propertyKR

ijr =
−KRjir but that happens to be non-local. This quantityKRijr is such that

TR
bc = KRcj b,j . (14)

The problem is, as we think happened with Van Weert’s derivation, we cannot give a
systematic procedure for obtaining the superpotential, we can only state the equations that,
in a very informal trial and error fashion, guided us to the expression forKR

abc.
To begin with, let us consider the expression for the radiative part of the energy-

momentum tensor (3) together with Maxwell equations outside of the world line

Fab, b = 0
∗Fab, b = 0 (where∗Fab ≡ εabcdF cd/2 is the dual ofFab)

(15)

and with the fact that the null four-vectorka is an eigenvector of the electromagnetic field
Fab [17]:

Fabkb = q

R2
ka. (16)
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It is also useful to introduce an orthonormal tetradec(a) (a = 1, 2, 3, 4) on the charge’s
world line, defined in such a way thater(4) ≡ vr and such that its unit space-like part
evolves according to the law [18]

d

dτ
er(γ ) = a(γ )vr γ = 1, 2, 3 (17)

where thea(γ ) ≡ abe(γ )b are the projections of the four-accelerationar over the spatial triad
er(γ ), with γ = 1, 2, 3. Guided by equations already mentioned we have managed to come
across the following expression for the potential which generates the radiative part of the
Maxwell tensor of a LWF:

KR
bjc = q2

4R2

[(
ac + 4

R2
Wkc

)
(abkj − ajkb)

+3W 2

R2
(ηcbkj − ηcj kb)− W

R
(ac +Wkc/R2)(vbkj − vjkb)

]
−2qF bjp(σ)p(θ)

∫ τ

0
a(σ)(s)a(θ)(s)v

c(s) ds (18)

where we sum overσ, θ = 1, 2, 4; Fbj = q(Ubkj −Ujkb)/R2 with Ur ≡ Bvr + ar , is the
full LWF and we are employing the quantityP(σ) ≡ pre

r
(σ ), this is the projection on the

tetrad of the quite useful four-vector [3, 13]

pq ≡ ka

R
− va. (19)

Notice that, as we might expect, expression (18) vanishes with the four-acceleration.
The whole energy-momentum tensor of a LWF can be obtained thus as the four-divergence

T cr = (Krjc

B +Krjc

R ),j (20)

as can be easily shown by computing the Maxwell tensor using equation (18). In fact this
is also the simplest way to check our expression for the new superpotential.

Quantities defined in a similar way to the non-local part of the superpotentialKR
bjc are

rather useful in classical electrodynamics. For example, let us introduce the non-local and
non-symmetric tensor

Pab(xj ) ≡ 2q2

3
UaR

∫ τ

−∞
ar(s)ar(s)vb(s) ds (21)

wherexj is the position of the charge when the proper time isτ . The integral can be shown
to be finite, at least is we accept that the motion is asymptotically uniform (i.e. uniform as
τ → −∞). We can easily show now that this non-local tensor is related with the moving
charge’s radiation rate at infinity, i.e. with the Larmor formula, through

Pib
,i = 2q2

3
(R,iUi + RUi,i)

∫ τ

−∞
a2(s)vb(s) ds − 2q2

3
Uia

2vbk
i = 2q2

3
a2vb (22)

where we have used thatτ,b = −kb/R anda2 ≡ arar .
As another example of the usefulness of non-local tensors, let us define the tensor

Lab ≡ qUa
∫ τ

−∞
vb(s) ds (23)

which, in this case, is only apparently non-local as it trivially becomes the local quantity
qUa(xb(τ ) − xb(−∞)), wherexa(s) stands for the charge’s position on the world line at
the proper times. Using the basic properties of the Synge vector given above, this tensor,
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or the local quantity to which it reduces, can be shown to generate the Liénard–Wiechert
electromagnetic four-potential

Lab,a = qUakb
(
−k

a

R

)
= q kb

R
= Ab. (24)

It should be clear by now thatLab can also be useful when obtaining a superpotential for
the Faraday tensorFab ≡ Ab,a − Aa,b = Lrb,ra − Lra,rb ≡ Sbra,r , where the superpotential
obviously should be defined as

Ssra ≡ Las,r − Lar,s . (25)

4. Concluding remarks

We have shown how the radiative part of an energy-momentum tensor of the Liénard–
Wiechert field can be expressed as the sum of an inactive part not contributing to the energy-
momentum balance plus an active part solely responsible for the balance. This splitting has
been found to be useful for removing the classical renormalization procedure thought to
be neccesary for obtaining the Lorentz–Dirac equation [13, 19]. We have shown how to
obtain the radiative part of the tensor as the four-divergence of a non-local superpotential as
corresponds to a quantity related to electromagnetic radiation. This superpotential still lacks
an appropriate physical interpretation. We have also illustrated the relevance of certain non-
local tensors for classical electrodynamics by defining tensors related, one with the Larmor
formula, and the other with the Liénard–Wiechert electromagnetic potential.

As, perhaps, we have managed to make apparent in this work, classical electrodynamics
is still a fascinating theoretical subject, in which lots of things have yet to be done. Even
some details associated with the most basic electrodynamic fact of all, the electromagnetic
field produced by a classical charged particle in motion, are not yet fully understood,
many of its basic problems remain unsolved [19–21]. Although this work only touches
tangentially, if at all, the basic problems associated with the motion of charged particles
[19] we, nevertheless, think the results obtained here might be useful in its study and in the
analysis of the theoretical structure of classical electrodynamics [13, 14, 17, 19–23].
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